LOUVAINS Efficient Louvain modularity maximization of sparse networks (MATLAB)
LEIDEN igraph Leiden modularity maximization (Python)
[M, Q] = louvains(W, Name=Value) % MATLAB
[M, Q] = leiden(W, Name=Value) # Python
Inputs:
W: Network matrix of size n x n.
Name=[Value] Arguments:
gamma=[Resolution parameter].
Positive scalar (default is 1).
start=[Initial module assignments].
Vector of length n (default is 1:n).
replicates=[Number of replicates].
Positive integer (default is 10).
finaltune=[Final tuning of optimized assignment].
Logical (default is false).
tolerance=[Convergence tolerance].
Positive scalar (default is 1e-10).
display=[Display progress].
"none": no display (default).
"replicate": display progress at each replicate.
Outputs:
M: Vector of module assignments (length n).
Q: Value of maximized modularity.
See also:
MUMAP, LOYVAIN.